The inverse eigenproblem with a submatrix constraint and the associated approximation problem for(R,S)-symmetric matrices
نویسندگان
چکیده
منابع مشابه
The Inverse Eigenproblem of Centrosymmetric Matrices with a Submatrix Constraint and Its Approximation
In this paper, we first consider the existence of and the general expression for the solution to the constrained inverse eigenproblem defined as follows: given a set of complex n-vectors {xi}i=1 and a set of complex numbers {λi}i=1, and an s-by-s real matrix C0, find an n-by-n real centrosymmetric matrix C such that the s-by-s leading principal submatrix of C is C0, and {xi}i=1 and {λi}i=1 are ...
متن کاملThe Inverse Problem of Centrosymmetric Matrices with a Submatrix Constraint
By using Moore-Penrose generalized inverse and the general singular value decomposition of matrices, this paper establishes the necessary and sufficient conditions for the existence of and the expressions for the centrosymmetric solutions with a submatrix constraint of matrix inverse problem AX = B. In addition, in the solution set of corresponding problem, the expression of the optimal approxi...
متن کاملThe inverse problem of nonsymmetric matrices with a submatrix constraint and its approximation
In this paper, we first give the representation of the general solution of the following least-squares problem (LSP): Given matrices X ∈ Rn×p, B ∈ Rp×p and A0 ∈ Rr×r , find a matrix A ∈ Rn×n such that ‖XTAX − B‖ = min, s. t. A([1, r]) = A0, where A([1, r]) is the r×r leading principal submatrix of the matrix A. We then consider a best approximation problem: given an n× n matrix à with Ã([1, r])...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2014
ISSN: 0377-0427
DOI: 10.1016/j.cam.2014.01.038